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A VARIATIONAL PRINCIPLE FOR NON-LINEAR CONCENTRATED WAVES* 

S.A. VAKULENKO 

Asymptotic solutions describing domain walls and wave beans in a 
non-linear continuous medium are considered. The shape of the walls or 
beams can be derived from a simple variational principle - a 
generalization of Fermat's principle in linear geometrical optics to 
the non-linear situation. 

I. Statement of the probtenr. We consider asymptotic solutions for certain classes 
of non-linear equations. The following equations will be studied: 

Au + &Ju'(u,x)= 0, u(x): Rm-+R, XER" (i-1) 
and also 

Au-foe~,;u,t(IulO,x)~=O, u(x)~C, XER" w?I 

where 0>1, m> 1, k =2,3. 
Eq.11.1) has applications (when m = 2) in two-dimensional problems of elasticity 

theory for liquid crystals (these applications will be considered in Sect.4). Eq.(1.2) is 
used to describe the propagation of radiation in a non-linear medium /I., 2/. In that case u 
is the complex amplitude of the field and a,' is the non-linear refractive index. 

Special asymptotic solutions (as w-+00) of Eqs.(l.l), (1.21 were considered in /3/. 
In this paper, for brevity, we shall use the term "concentrated solution" (for a rigorous 
definition see 131). 

The following is an example of a concentrated solution. 
u in (1.1). Then the equation has an asymptotic solution 

Put m = I, a>O, Vu' = a*(z)sin 

u = 4 arctg (exp (001 (xO)(z - x0))+ 0 (o-l)= u. (x) + 0 (o-1) (l-3) 

The function uil (2) varies essentially in a narrow region, of size 
point x0, but when 12--X! I>@-' 

O(oel), near the 
the function 

amount from 0 or 2n. 
u@(x) differs by an exponentially small 

The solution is concentrated near ,z*. When m>* such solutons of 
Eq.(l.l) are concentrated near hypersurfaces S in Rm+ 
centrate near curves 1. 

, similar solutions of Eq.fl.2) con- 
Solutions of Eq.tl.1) are interpreted as domain walls, and those of 
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Eq.fl.2) as wave beams. 
The main aim of this paper is to formulate a simple variational principle by means of 

which it is possible, on the sole basis of the form of the equations, to determine the 
above-mentioned hypersurfaces and curves, avoiding the need to determine the principal term 
u0 of the asymptotic expansion. The point is that an explicit expression for this principal 
term does not always exist. Nevertheless, it is often possible to find the region in which 
the solution is concentrated without using formulae for uO. Our variational principles are 
non-linear generalizations of Fermat's principle in geometrical optics. In the case of 
(l.l), they are valid for any functions V (u, x) satisfying Condition 1 (see below, Sect. 
2). For Problem (1.2), if x E N?, we have been able to obtain a simple Fermat-type principle 
only for potentials of the form 

(D = 2u (4 I 2 r-” (P + w1 + p (x) / II / 2, p > 0. a, p > 0 (1.4) 

2. Asymptoti.c fornwrtislN for Eq.fl.11. For an arbitrary function V a concentrated 
solution of Eq.(l.l) need not always exist. The following simple conditions, whose meaning 
will be clarified later, are sufficient for that to be the case: 

Condition 1. VEC”, I Y I-CC,, and for every x the function V has two local maxima 

u+ (x)9 k (x)7 such that 

V ma* = v (u.,(x), x) = v (u- (4, x)3 minx 1 V,, (u+(x), x) ) > 6 > 0 (2.1) 

Condition 2. For all local maxima of V other than n+, u.., the value of V at these 

points does not exceed V,,, -S,(6,> 0). 
We may assume without loss of generality that V,,, =o. To simplify the 

constructions, we shall also assume that the functions Uk are independent of x. 
The method is analogous to that of /41, except that the sufficient conditions considered 

there in the case m=2 are different. 
We shall look for a solution of Eq.(l.l) concentrated in an O(~-l)-neighbourhood of 

a smooth hypersurface SCRrn. This hypersurface must be a closed manifold. In a neighbour- 
hood s(M,) of a point M,E S, we introduce coordinate n, s, where the coordinates s = 

($1‘ sa, &7, * * -2 s?& parametrize !ZJ(M,)fl S, and In.1 is the distance from M to its 
projection on S. The sign of n is chosen depending on which side of S the point M is 
situated. For example, 8 may be chosen as a sphere of diameter 0 (00). Then the coordinates 
just defined do not degenerate as o- CO. 

In the neighbourhood 8 we construct a solution 

n, TT n0 (Y, 8) + o-'u, (Y, s) i_ . . ., v = on (2.2) 

The Laplacian Au of (1.1) may be expressed in terms of the coordinates n,s, up to 
terms in f$,w, as follows: 

Au = w%,, + ox(s).uy'+ Q(f) (2.3) 

In order to determine * 6% replace u in (2.3) by a linear function of Y. The details 
may be found in f5l. It turns out that x equals the mean curvature of S (for the definition 
of mean curvature, see /6, p.30/). Now, expanding V,' (see (1.11 in powers of u and n, 
we obtain an equation for the principal term: 

f%,java+ V,,'~u,,O,s)~O, V(U,O,S) = I'(u,s)J,=, (2.4) 

The corrections uj(i = i,2, . ..) are obtained from recurrence relations 

Quj =Fj(~gtl~lr. ‘. Uj-1, S) (Q = aa/aVa + J’k (UO, 0, s)) (2.5) 

It can be shown that 

F1 = -x&- vvu,(uo,n,s) (2.6) 

Eqs.(2.4) and (2.5) must be considered together with boundary conditions that yield a 
concentrated solution: 

~--+-~-xJ. Ua(V,S)+Ltfr Uj(v,S)+o (Z.Ti) 

An explicit solution nO(vIs) of Problem (2.4), (2.7) is given by the formula 

y + h (8) = f (-- 21’ (2.0, s))-“* dz, u-<%I<% (2.8) 
“_ 

Conditions 1 and 2 imply that the expression under the radical is positive, and we 
obtain asymptotic relations 
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v+-+:=h I%- kt I = 0 (exp (-6, Iv I)), ha> 0. 

The constant A (s) can be determined by an additional condition, e.g., 0 = argmax, 1 uoy' 

bt 8) I. 
We now consider the equations for the corrections (2.5). A direct check shows that the 

kernel of the operator Q with zero boundary conditions at infinity is not empty: @zovt = 0. 
Hence it follows that a bounded correction a1 exists only if 

5 Fj (VI 8) Z& dV = 0 (2.9) 
-00 

In particular, for I=1 we obtain from (2.6) and (2.9) 

at x=--, 
a0 

a (n, 8) = fif v (ug (v), rl, 8) dv 
-0D 

n = 0, al = an’, a, = a 

(2.10 

These relations admit of a simple geometrical interpretation (see below, Sect.3) and 
impose restrictions on the surface S. If condition (2.9) holds with j = l,then 

The constant c, (9) is determined only at the second step, when uI is being determined, 
on the basis of the truth of (2.9) for j = 2. Similarly, Conditions (2.9), j_>2, may 
always be satisfied by a suitable choice of c,-1 (3). At step j, as follows from (2.9): 

Cj T U~dV=Bj(S) 

where 3, is a function depending on the previously found corrections mot U1, . . . . q-1,. 
proceeding in this way one can determine an unlimited number of corrections u,-, with 

the following estimate holding at each step: 

v -+ & 00, I uj I = 0 (exp (4, Iv t )) 

We have thus constructed an asymptotic solution in the neighbourhood Q (Mr). We note 
that neither ug (x) nor 4 (x) depend on the choice of the coordinates s in 52. It is 
thus possible to extend the solution to a O(&ll) -neighbourhood Q(S) of the entire 
hypersurface S, "matching" solutions for different neighbourhoods Q (M3. Outside SJ (S) 
we can determine u(x)= m+ or u(x)3 u_ , depending on which side of S the point x is 
situated. Then the two solutions (outside 51 (S) and in it) can be combined by a partition 
of unity. As a result we obtain an asymptotic solution mod (men), HEN. 

Remark about ~o~~t~ons I and 2. If one relaxes the condition I'(II+,x)=V(D_,X), Eq. 
11.1) need not have a concentrated solution. However, if this equality holds only on a 
certain smooth curve F (let m = Z), then a solution may nevertheless be constructed, 
subject to certain non-degeneracy conditions on r /4/. The solution is concentrated in the 
neighbourhood of r, and the orthogonality Condition (2.9) is satisfied by suitable choice 
of h (8). A rigorous discussion can be found in /4/. 

If, however, the function V(u+, x) is everywhere different from V(U_,X) (where 
are the only local maxima of V), 

IQ 
one can construct asmyptotic solutions of the parabolic 

equation 
IQ = AU f o'V,'(u, x) (2.12) 

which is a multidimensional generalization of Fisher's equation /7/. However, these 
solutions are explicitly time-dependent. Eq.(2.12) in the case I?&=1 was studied in /a/. 

3. Var+atioMt primcipte for the surface Ig. We will now explain the geometrical 
meaning of Conditions (2.10). It follows from (2.8) that dv P: (-2V (u,O,s))-*i~du. Transforming 
the integral for Q to the variable U, we obtain 



498 

tL+ 

a(x)=const $ I'-_I'(U,X)du 

Thus, a ix) is defined directly in terms of Eq.(l.l), and (3.1) can be used to extend 
it from & to the whole space Rm. It turns out that S satisfies the following variational 
principle: 

where de is the differential form of the (m - i)-dimensional volume (measure) on S. 
The geometric meaning of (3.2) is that S is a minimum surface in the conformally 

Euclidean metric a (4 \ >. The physical interpretation is also simple: if the solution 
is interpreted as a domain wall, Condition (3.2) means that the contribution of the energy of 
the domain wall to the energy of the system is extremal. 

It can be proved that (3.2) and (2.10) are equivalent. 
Let S be an extremal of (3.2). Subject S to an infinitesimal deformation by displacing 

each point along the normal to S for a distance &(s), 
measure of S is /6/ 

6!V--- S&?kfs)is(5)& 
s 

The increment 6L of the functional L splits into 
to the increment of the volume of S and a contribution 
We have /6/ 

BL1 = - 
f 

x(s) Qg (s) 6n (8) do, 6L = (a*(s) S s S 

The corresponding increment to the 

two parts: a contribution i3Lt due 

& due to the change in a(x). 

-xo,(s))& (s)& = 0 

This equation is equivalent to (2.101, since 6n (s) is arbitrary. 

4. Example. Consider Eq.(l.l) with li (u) = -U*(z) Cm U, a> 0, m = 1. The soluton is 
determined by formula (1.3), and the point I,, satisfies the condition daldx (y=X. = 0. 

Eq.ll.1) with m=2 occurs in the two-dimensional theory of elasticity of nematic 
liquid crystals (NLC), in which case V = -1ip~(s)cos2u, the function u&y) determines 
the mutual angle of orientation of the magnetic field H and the director I. The coefficient 

a2 (4 equals ~lPII", where H is the magnetic field strength, II. is the diamagnetic 
susceptibility of the crystal, and we are confining our attention to NLC having equal values 
K of the moduli of longitudinal and transverse bending /9, lo/. 

Let us assume that the field H is intensive: Ha = maha(z,y),hz', &' = O(1), w & 1. Then 
we can construct asymptotic solutions as in Sect.2. These solutions have the sense of domain 
walls in NLC, and the hypersurfaces S are simply curves satisfying the condition 

@.I) 

This is formally the same as Fermat's principle of geometrical optics for a medium in 
which the speed of light is ~(r~y) = a-1 (s,&, though the physical meaning of the solution 
is quite different. This analogy shows that the curves S may be determined using standard 
methods /llf . The principal term of the asymptotic expansion is given by a formula similar 
to (1.3). 

The solution just constructed breaks down near points where the curve S intersects 
itself. 

5. The case of Eq.fl.2). It might seem that the existence of a simple variational 
principle for concentrated solutions is largely due to the fact that the principal term % 
can be determined explicitly. That this is not the case can be shown by considering Eq.11.2). 
We shall present only the main results, since the constructions are analogous to those in 
Sects.2 and 3; they may be found in /12, 131. 

We will seek a solution of Eq.(1.2), where reaP,concentrated near a curve 2. In the 
neighbourhood of f we introduce coordinates n, p, 5, where n is the distance of the point 
from the curve along the normal, p is its distance along the binormal, and s is a natural 
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is 

(5.9 

parameter on the curve, The principal term of the asymptotic expansion 

._,.(.,,..,i'~~*~(~,)~~~), q=qe-i-o-~qh v=Ffxi7 

where UO,(lO, ql are real. The function U, satisfies the equation 

u",,+ v-qV-t- @@,*(a&o, S)--G?(s) u, = 0 
Q(UQ%S) = @DUO? % P.s)I,L+p--o 

(5.2) 

For a fairly large class of potentials @, there exists a nun-trivial solution of Eq. 
(5.2) which decreases exponentially as V-00, /13/. This is the case, e.g. for the 

potentials defined by (1.4). 
As in Sect.2. orthocronalitv conditions of type (2.9) imply conditions on Curve land 

enable us to determine the principal part of the-phase Pe (8). We have 

It turns out that 
variational principle: 

qO(s)l(s) = c = const, 

(2qozI - K) x = Wan I,,+_ 0, akap In=pEo = 0 (5.3) 

A’ = 1 VU& (v, s) dv, 

m 

F = l vCD (U,a (v. s), n, p, s) dv 
0 0 

the system Of l%s. (5.3) determining curve z can be derived from a 

qa(X(8))ds=o, (I (2) = 2cq, (x) - K (a) 

t 

where I, x, qo, u, are the values of 1, K PO* u, defined by (5.2), (5.31, with the parameter 
S replaced by x, i.e., they are the quantities obtained from Eqs. (5.2) I (5.3)‘ extended from 1 
to the whole space Ra. 

The variational principle (3.2) is a Fermat-type principle for non-linear wave beams. 
Unlike the conventional Fermat principle, it contains an additional parameter c. The 
appearance of this parameter is due to the existence of a relationship between the amplitude 
and the phase q. As C increases, the intensity of the beam, defined by .ql also increases. 
For beams of different intensity one obtains different curves 2, 

At first sight one might think that, since u, is not explicitly evaluated, the principle 
(3.2) is of little practical use and curve z (the analogue of a ray far a non-linear medium) 
cannot be found without using numerical methods. However, if the dependence of Q) on x can 
be made explicit by a simple transformation, the non-linear Fermat principle becomes as 
simple to use as in the linear case , just as in the case of Eq.(l.l). A transformation of 
this sort is possible, e.g., for Potentials of the form (1.4). 

An example will suffice. Consider f1.4) with p = 2. The standard Eg.(5,2f can 
be simplified by the substitution 

UO = c1u (p), P = cIIv, c1 = (Q - $)l'*a+, cII i= (PO* - (3)" 

Finally we obtain a(x) = C%(P) f p (X) a-' (x). Thus, the problem of determining the trajectory 
of the beam may be considered, as in the linear case, apart from that of determining the 
entire structure of the beam - one need only find curve 1, without knowing the detailed 
structure of the beam. 

1. 

2. 

3. 

4. 

The author is indebted to I.A. Molotkov and E.L. Aero far their advice and comments. 
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EDGE EFFECT IN THE BENDING OF A THIN THREE-DIMENSIONAL PLATE* 

I.S. ZORIN and S.A. NAZAROV 

The boundary layer near the rigidly clamped edge of a thin 
three-dimensional plate subjected to bending loads is investigated. It 
is shown that taking account of the next term in the deflection 
asymptotic form results in the appearance of inhomogeneities in the 
boundary conditions on the plate edge. It is proved that far from the 
edge the difference in the solution of the problem in an invariant 
formulation and the three-dimensional solution is inversely proportional 
to the plate thickness (the error for the Kirchhoff solution is 
inversely proportional to the square of the thickness; near the edge the 
accuracies of both solutions is identical). A correction term is found 
in a representation of the eigenfrequencies of the bending vibrations 
and a comparison is made with the Reissner theory. 

1. Formt&ation of the p~ob&nt. Let 8 be a domain on the plane Ra bounded:by a closed 
simple smooth (class Cm) contour 8% Q is a cylinder {x: y = (q,q)~ 8, 1 x9 f <'I'&} of 
low altitude k with side surface S, and bases rhf. We examine the three-dimensional problem 
of elasticity theory 

pAu(h,x)+(h + p)grad divu(h,x)+ h""f(y)e@) = 0, x~ Qh (1.1) 
u(S) (51; h, x) = p* (y)e@, x E Fh* W) 

u(h,x)=O, XE& (1.3) 


